Home » Nature » Gentle-field management of actual and digital cost carriers

Gentle-field management of actual and digital cost carriers

[ad_1]

  • Yablonovitch, E., Heritage, J. P., Aspnes, D. E. & Yafet, Y. Digital photoconductivity. Phys. Rev. Lett. 63, 976–979 (1989).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Yamanishi, M. Area-induced optical nonlinearity because of digital transitions in semiconductor quantum effectively constructions. Phys. Rev. Lett. 59, 1014–1017 (1987).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Schultze, M. et al. Controlling dielectrics with the electrical discipline of sunshine. Nature 493, 75–78 (2012).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Sommer, A. et al. Attosecond nonlinear polarization and light-weight–matter power switch in solids. Nature 534, 86–90 (2016).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Lucchini, M. et al. Attosecond dynamical Franz–Keldysh impact in polycrystalline diamond. Science 353, 916–919 (2016).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Schlaepfer, F. et al. Attosecond optical-field-enhanced service injection into the GaAs conduction band. Nat. Phys. 14, 560–564 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Jürgens, P. et al. Origin of strong-field-induced low-order harmonic era in amorphous quartz. Nat. Phys. 16, 1035–1039 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sanari, Y. et al. Function of digital band inhabitants for top harmonic era in solids. Phys. Rev. B 102, 041125 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Schiffrin, A. et al. Optical-field-induced present in dielectrics. Nature 493, 70–74 (2012).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Higuchi, T., Heide, C., Ullmann, Okay., Weber, H. B. & Hommelhoff, P. Gentle-field-driven currents in graphene. Nature 550, 224–228 (2017).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, L., Zhang, Y., Chen, G. & Franco, I. Stark management of electrons alongside nanojunctions. Nat. Commun. 9, 2070 (2018).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Langer, F. et al. Few-cycle lightwave-driven currents in a semiconductor at excessive repetition fee. Optica 7, 276 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Garzón-Ramírez, A. J. & Franco, I. Symmetry breaking within the Stark management of electrons at interfaces (SCELI). J. Chem. Phys. 153, 044704 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Hanus, V. et al. Gentle-field-driven present management in solids with pJ-level laser pulses at 80 MHz repetition fee. Optica 8, 570 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Krausz, F. & Stockman, M. I. Attosecond metrology: from electron seize to future sign processing. Nat. Photon. 8, 205–213 (2014).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Markov, I. L. Limits on basic limits to computation. Nature 512, 147–154 (2014).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Kruchinin, S. Y., Krausz, F. & Yakovlev, V. S. Colloquium: Sturdy-field phenomena in periodic techniques. Rev. Mod. Phys. 90, 1–27 (2018).

    MathSciNet 
    Article 

    Google Scholar
     

  • Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Jiménez-Galán, Á., Silva, R. E. F., Smirnova, O. & Ivanov, M. Lightwave management of topological properties in 2D supplies for sub-cycle and non-resonant valley manipulation. Nat. Photon. 14, 728–732 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bai, Y. et al. Excessive-harmonic era from topological floor states. Nat. Phys. 17, 311–315 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Ishikawa, Okay. L. Nonlinear optical response of graphene in time area. Phys. Rev. B 82, 201402 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Heide, C., Boolakee, T., Higuchi, T. & Hommelhoff, P. Adiabaticity parameters for the categorization of sunshine–matter interplay: from weak to sturdy driving. Phys. Rev. A 104, 023103 (2021).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Boolakee, T. et al. Size-dependence of light-induced currents in graphene. J. Phys. B 53, 154001 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y., Chen, S. & Chen, G. First-principles time-dependent quantum transport principle. Phys. Rev. B 87, 085110 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Malic, E., Winzer, T., Bobkin, E. & Knorr, A. Microscopic principle of absorption and ultrafast many-particle kinetics in graphene. Phys. Rev. B 84, 205406 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gierz, I. et al. Snapshots of non-equilibrium Dirac service distributions in graphene. Nat. Mater. 12, 1119–1124 (2013).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Franco, I. & Brumer, P. Minimal necessities for laser-induced symmetry breaking in quantum and classical mechanics. J. Phys. B 41, 074003 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Floss, I., Lemell, C., Yabana, Okay. & Burgdörfer, J. Incorporating decoherence into solid-state time-dependent density purposeful principle. Phys. Rev. B 99, 224301 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Neufeld, O., Tancogne-Dejean, N., de Giovannini, U., Hübener, H. & Rubio, A. Gentle-driven extraordinarily nonlinear bulk photogalvanic currents. Phys. Rev. Lett. 127, 126601 (2021).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Heide, C. et al. Digital coherence and coherent dephasing within the optical management of electrons in graphene. Nano Lett. 21, 9403–9409 (2021).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Tetienne, J. P. et al. Quantum imaging of present stream in graphene. Sci. Adv. 3, e1602429 (2017).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tan, S. et al. Coherent electron switch on the Ag/graphite heterojunction interface. Phys. Rev. Lett. 120, 126801 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Heide, C. et al. Attosecond-fast inside photoemission. Nat. Photon. 14, 219–222 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fortier, T. M. et al. Service-envelope phase-controlled quantum interference of injected photocurrents in semiconductors. Phys. Rev. Lett. 92, 147403 (2004).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Garg, M. et al. Multi-petahertz digital metrology. Nature 538, 359–363 (2016).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Röhrl, J. et al. Raman spectra of epitaxial graphene on SiC(0001). Appl. Phys. Lett. 92, 201918 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Emtsev, Okay. V. et al. In the direction of wafer-size graphene layers by atmospheric stress graphitization of silicon carbide. Nat. Mater. 8, 203–207 (2009).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Castro Neto, A. H., Guinea, F., Peres, N. M. R. R., Novoselov, Okay. S. & Geim, A. Okay. The digital properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Kelardeh, H. Okay., Apalkov, V. & Stockman, M. I. Graphene in ultrafast and superstrong laser fields. Phys. Rev. B 91, 045439 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gabor, N. M. et al. Sizzling carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Shautsova, V. et al. Plasmon induced thermoelectric impact in graphene. Nat. Commun. 9, 5190 (2018).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mueller, T., Xia, F., Freitag, M., Tsang, J. & Avouris, Ph. Function of contacts in graphene transistors: a scanning photocurrent examine. Phys. Rev. B 79, 245430 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Woessner, A. et al. Close to-field photocurrent nanoscopy on naked and encapsulated graphene. Nat. Commun. 7, 10783 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Zheng, X., Wang, F., Yam, C. Y., Mo, Y. & Chen, G. Time-dependent density-functional principle for open techniques. Phys. Rev. B 75, 195127 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lui, C. H., Mak, Okay. F., Shan, J. & Heinz, T. F. Ultrafast photoluminescence from graphene. Phys. Rev. Lett. 105, 127404 (2010).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vampa, G. et al. Theoretical evaluation of high-harmonic era in solids. Phys. Rev. Lett. 113, 073901 (2014).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Tune, J. C. W., Tielrooij, Okay. J., Koppens, F. H. L. & Levitov, L. S. Photoexcited service dynamics and impact-excitation cascade in graphene. Phys. Rev. B 87, 155429 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Brida, D. et al. Ultrafast collinear scattering and service multiplication in graphene. Nat. Commun. 4, 1987 (2013).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • [ad_2]

    Leave a Reply