[ad_1]
Wang, F. et al. A luminous quasar at redshift 7.642. Astrophys. J. Lett. 907, L1 (2021).
Neeleman, M. et al. The kinematics of z ≳ 6 quasar host galaxies. Astrophys. J. 911, 141 (2021).
Volonteri, M. The formation and evolution of large black holes. Science 337, 544–547 (2012).
Van der Vlugt, D. & Costa, T. How AGN suggestions drives the dimensions progress of the primary quasars. Mon. Not. R. Astron. Soc. 490, 4918–4934 (2019).
Hickox, R. C. & Alexander, D. M. Obscured lively galactic nuclei. Annu. Rev. Astron. Astrophys. 56, 625 (2018).
Weymann, R. J., Morris, S. L., Foltz, C. B. & Hewett, P. C. Comparisons of the emission-line and continuum properties of broad absorption line and regular quasi-stellar objects. Astrophys. J. 373, 23–53 (1991).
Gibson, R. R. et al. A catalog of broad absorption line quasars in Sloan Digital Sky Survey Knowledge Launch 5. Astrophys. J. 692, 758–777 (2009).
Shen, Y. et al. A catalog of quasar properties from Sloan Digital Sky Survey Knowledge Launch 7. Astrophys. J. Suppl. Ser. 194, 45 (2011).
Cameron, E. On the estimation of confidence intervals for binomial inhabitants proportions in astronomy: the simplicity and superiority of the Bayesian strategy. Publ. Astron. Soc. Aust. 28, 128–139 (2011).
Shen, Y. et al. Gemini GNIRS near-infrared spectroscopy of fifty quasars at z ≳ 5.7. Astrophys. J. 873, 35 (2019).
Schindler, J.-T. et al. The X-shooter/ALMA pattern of quasars within the epoch of reionization. I. NIR spectral modeling, iron enrichment, and broad emission line properties. Astrophys. J. 905, 51 (2020).
Yang, J. et al. Probing early super-massive black gap progress and quasar evolution with near-infrared spectroscopy of 37 reionization-era quasars at 6.3 < z ≤ 7.64. Astrophys. J. 923, 262 (2021).
Allen, J. T., Hewett, P. C., Maddox, N., Richards, G. T. & Belokurov, V. A powerful redshift dependence of the broad absorption line quasar fraction. Mon. Not. R. Astron. Soc. 410, 860–884 (2011).
Trump, J. R. et al. A catalog of broad absorption line quasars from the Sloan Digital Sky Survey Third Knowledge Launch. Astrophys. J. Suppl. Ser. 165, 1–18 (2006).
Dai, X., Shankar, F. & Sivakoff, G. R. 2MASS reveals a big intrinsic fraction of BALQSOs. Astrophys. J. 672, 108–114 (2008).
Bruni, G. et al. The WISSH quasars mission. VI. Fraction and properties of BAL quasars within the hyper-luminosity regime. Astron. Astrophys. 630, A111 (2019).
Wang, F. et al. The invention of a luminous broad absorption line quasar at a redshift of seven.02. Astrophys. J. Lett. 869, L9 (2018).
Rodríguez Hidalgo, P. et al. Survey of extraordinarily high-velocity outflows in Sloan Digital Sky Survey quasars. Astrophys. J. 896, 151 (2021).
Ishibashi, W., Banerji, M. & Fabian, A. C. AGN radiative suggestions in dusty quasar populations. Mon. Not. R. Astron. Soc. 469, 1496–1501 (2017).
Costa, T., Rosdahl, J., Sijacki, D. & Haehnelt, M. G. Driving fuel shells with radiation strain on mud in radiation-hydrodynamic simulations. Mon. Not. R. Astron. Soc. 473, 4197–4219 (2018).
Dunn, J. P., Crenshaw, D. M., Kraemer, S. B. & Trippe, M. L. Bodily circumstances within the ultraviolet absorbers of IRAS F22456-5125. Astrophys. J. 713, 900–905 (2010).
Moe, M., Arav, N., Bautista, M. A. & Korista, Ok. T. Quasar outflow contribution to AGN suggestions: observations of QSO SDSS J0838+2955. Astrophys. J. 706, 525–534 (2009).
Fiore, F. et al. AGN wind scaling relations and the co-evolution of black holes and galaxies. Astron. Astrophys. 601, A143 (2017).
Elvis, M. A construction for quasar. Astrophys. J. 545, 63–76 (2000).
Decarli, R. et al. An ALMA [C ii] survey of 27 quasars at z > 5.94. Astrophys. J. 854, 97 (2018).
Eilers, A.-C. et al. Detecting and characterizing younger quasars. I. Systemic redshifts and proximity zone measurements. Astrophys. J. 900, 37 (2020).
Costa, T., Sijacki, D., Trenti, M. & Haehnelt, M. G. The atmosphere of brilliant QSOs at z ~ 6: star-forming galaxies and X-ray emission. Mon. Not. R. Astron. Soc. 439, 2146–2174 (2014).
Wright, E. L. et al. The Vast-field Infrared Survey Explorer (WISE): mission description and preliminary on-orbit efficiency. Astron. J. 140, 1868–1881 (2010).
Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).
Bañados, E. et al. The Pan-STARRS1 Distant z > 5.6 Quasar Survey: greater than 100 quasars throughout the first Gyr of the Universe. Astrophys. J. Suppl. Ser. 227, 11 (2016).
Wang, F. et al. Exploring reionization-era quasars. III. Discovery of 16 quasars at 6.4 ≲ z ≲ 6.9 with DESI Legacy Imaging Surveys and the UKIRT Hemisphere Survey and quasar luminosity perform at z ∼ 6.7. Astrophys. J. Lett. 884, 30 (2019).
López, S. et al. XQ-100: a legacy survey of 100 3.5 ≲ z ≲ 4.5 quasars noticed with VLT/X-shooter. Astron. Astrophys. 594, A91 (2016).
Modigliani, A. et al. In Soc. Photograph-Decide. Instr. Eng. Conf. Ser. Observatory Operations: Methods, Processes, and Programs III Vol. 7737 (eds Silva, D. R. et al.) 773728 (SPIE, 2010).
Cupani, G. et al. In Soc. Photograph-Decide. Instr. Eng. Conf. Collection Vol. 11452, 114521U (SPIE, 2020).
Ross, N. P. & Cross, N. J. G. The close to and mid-infrared photometric properties of recognized redshift z ≳ 5 quasars. Mon. Not. R. Astron. Soc. 494, 789–803 (2020).
Jiang, L. et al. Discovery of eight z ~ 6 quasars within the Sloan Digital Sky Survey overlap areas. Astron. J. 149, 188 (2015).
Lawrence, A. et al. The UKIRT Infrared Deep Sky Survey (UKIDSS). Mon. Not. R. Astron. Soc. 379, 1599–1617 (2007).
Cross, N. J. G. et al. The VISTA Science Archive. Astron. Astrophys. 548, A119 (2012).
Mazzucchelli, C. et al. Bodily properties of 15 quasars at z ≳ 6.5. Astrophys. J. 849, 91 (2017).
Bañados, E. et al. A metal-poor damped Lyα system at redshift 6.4. Astrophys. J. 885, 59 (2019).
Edge, A. et al. The VISTA Kilo-degree Infrared Galaxy (VIKING) Survey: bridging the hole between high and low redshift. Messenger 154, 32–34 (2013).
Persson, S. E. et al. FourStar: the near-infrared imager for the 6.5 m Baade Telescope at Las Campanas Observatory. Publ. Astron. Soc. Pac. 125, 654–682 (2013).
Moorwood, A., Cuby, J. G. & Lidman, C. SOFI sees first gentle on the NTT. Messenger 91, 9–13 (1998).
Reichard, T. A. et al. Continuum and emission-line properties of broad absorption line quasars. Astron. J. 126, 2594–2607 (2003).
Knigge, C., Scaringi, S., Goad, M. R. & Cottis, C. E. The intrinsic fraction of broad-absorption line quasars. Mon. Not. R. Astron. Soc. 386, 1426–1435 (2008).
Maddox, N., Hewett, P. C., Warren, S. J. & Croom, S. M. Luminous Ok-band chosen quasars from UKIDSS. Mon. Not. R. Astron. Soc. 386, 1605–1624 (2008).
Giustini, M., Cappi, M. & Vignali, C. On the absorption of X-ray brilliant broad absorption line quasars. Astron. Astrophys. 491, 425–434 (2008).
White, R. L. et al. An I-band-selected pattern of radio-emitting quasars: proof for a big inhabitants of purple quasars. Astron. J. 126, 706–722 (2003).
Becker, R. H. et al. Properties of radio-selected broad absorption line quasars from the primary brilliant quasar survey. Astrophys. J. 538, 72–82 (2000).
Chehade, B. et al. Two extra, brilliant, z > 6 quasars from VST ATLAS and WISE. Mon. Not. R. Astron. Soc. 478, 1649–1659 (2018).
Reed, S. L. et al. Eight new luminous z ≥ 6 quasars found through SED mannequin becoming of VISTA, WISE and Darkish Power Survey 12 months 1 observations. Mon. Not. R. Astron. Soc. 468, 4702–4718 (2017).
Pâris, I. et al. The Sloan Digital Sky Survey Quasar Catalog: fourteenth information launch. Astron. Astrophys. 613, A51 (2018).
Dunn, J. P. et al. BAL outflow contribution to AGN suggestions: frequency of S IV outflows within the SDSS. Astrophys. J. 750, 143 (2012).
Connor, T. et al. X-ray observations of a [C II]-bright, z = 6.59 quasar/companion system. Astrophys. J. 900, 189 (2020).
Mann, H. B. & Whitney, D. R. On a take a look at of whether or not one among two random variables is stochastically bigger than the opposite. Ann. Math. Stat. 18, 50–60 (1947).
Vestergaard, M. & Wilkes, B. An empirical ultraviolet template for iron emission in quasars as derived from I Zwicky 1. Astrophys. J. Supp. 134, 1–33 (2001).
Runnoe, J. C., Brotherton, M. S. & Shang, Z. Updating quasar bolometric luminosity corrections. Mon. Not. R. Astron. Soc. 422, 478–493 (2012).
Runnoe, J. C., Brotherton, M. S. & Shang, Z. Erratum: Updating quasar bolometric luminosity corrections. Mon. Not. R. Astron. Soc. 427, 1800 (2012).
Vestergaard, M. & Osmer, P. S. Mass features of the lively black holes in distant quasars from the massive brilliant quasar survey, the brilliant quasar survey, and the color-selected pattern of the SDSS fall equatorial stripe. Astrophys. J. 699, 800–816 (2009).
Vestergaard, M. & Peterson, B. M. Figuring out central black gap plenty in distant lively galaxies and quasars. II. Improved optical and UV scaling relationships. Astrophys. J. 641, 689–709 (2006).
Coatman, L. et al. Correcting C IV-based virial black gap plenty. Mon. Not. R. Astron. Soc. 465, 2120–2142 (2017).